Comment on "Heat fluctuations in Brownian transducers"

F. van Wijland

Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris VII, 10 rue Alice Domon et Léonie Duquet,

75025 Paris cedex 13, France

(Received 10 April 2006; published 21 December 2006)

The results presented in [A. Gomez-Marin and J.M. Sancho, Phys. Rev. E **73**, 045101(R) (2006)] are mathematically incomplete and physically faulty. Contrary to their claim, there exists a fluctuation theorem for the heat probability distribution function in Brownian transducers operating between two heat reservoirs. The corresponding large deviation function is determined exactly.

DOI: 10.1103/PhysRevE.74.063101

PACS number(s): 05.70.Ln, 05.40.-a.

The system considered in Ref. [1] can be modeled by a set of coupled Langevin equations for two degrees of freedom x and y

$$\frac{dx}{dt} = -k(x-y) + \xi_1, \quad \frac{dy}{dt} = -k(y-x) + \xi_2, \tag{1}$$

where ξ_i is a Gaussian white noise with variance $2T_i$ and k>0 is a coupling constant. The heat Q(t) outcoming from the reservoir at T_2 over a time duration t that is the subject of Ref. [1], can be written, using the Stratonovitch discretization prescription, in the form

$$Q(t) = -k \int_0^t dt r(t) \frac{dy}{dt} = \int_0^t dt (k^2 r^2 - kr\xi_2), \qquad (2)$$

where r(t)=y(t)-x(t) can be found by solving Eq. (1) and has the expression $r(t)=\int^t d\tau e^{-2k(t-\tau)} [\xi_2(\tau)-\xi_1(\tau)]$. Therefore Q as defined in Eq. (2) is a quadratic form in the noises ξ_1 and ξ_2 , and evaluating the average $\langle e^{-\lambda Q} \rangle$ with respect to the Gaussian noises amounts to performing a simple Gaussian integral (see Refs. [2–4] for similar calculations). In the Fourier representation, the matrix of the quadratic form in ξ_1, ξ_2 reads

$$\Gamma(\omega,\lambda) = \begin{pmatrix} \frac{\beta_1}{2} + \frac{2\lambda k^2}{\omega^2 + 4k^2} & -\frac{2\lambda k^2}{\omega^2 + 4k^2} + \frac{\lambda k}{i\omega + 2k} \\ -\frac{2\lambda k^2}{\omega^2 + 4k^2} + \frac{\lambda k}{-i\omega + 2k} & \frac{\beta_2}{2} - \frac{2\lambda k^2}{\omega^2 + 4k^2} \end{pmatrix}.$$
(3)

The generating function of the cumulants of Q(t), denoted by $\mu(\lambda)$, and defined by $\mu(\lambda) = \lim_{t \to \infty} \frac{\ln(e^{-\lambda Q})}{t}$ is obtained from the determinant of $\Gamma(\omega, \lambda)$

$$\mu(\lambda) = \frac{1}{2} \int \frac{d\omega}{2\pi} \ln \frac{\det \Gamma(\omega, 0)}{\det \Gamma(\omega, \lambda)}$$
$$= \frac{1}{2} \int \frac{d\omega}{2\pi} \ln \frac{\omega^2 + 4k^2}{\omega^2 + 4k^2(1 - \lambda T_1)(1 + \lambda T_2)}$$
(4)

and is explicitly given by

$$\mu(\lambda) = k [1 - \sqrt{(1 - \lambda T_1)(1 + \lambda T_2)}].$$
 (5)

Of course, the first and second cumulants of Q given, respectively, by (minus) the first and the second derivatives of $\mu(\lambda)$ are identical to the results presented in Ref. [1]. It is straightforward to see that μ possesses an important symmetry property, namely,

$$\mu(\lambda) = \mu(T_1^{-1} - T_2^{-1} - \lambda).$$
(6)

In order to return to the quantity of interest Q(t) and to its large deviation function $\pi(q)$ defined in terms of the fluctuating time-averaged heat $q(t) = \frac{Q(t)}{t}$ by

$$\pi(q) = \lim_{t \to \infty} \frac{1}{t} \ln P(Q = qt, t) \tag{7}$$

we use the fact that $\pi(q)$ is simply the Legendre transform of $\mu(\lambda)$, $\pi(q) = \max_{\lambda} \{\lambda q + \pi(q)\}$. Given that $\mu(\lambda)$ is not quadratic in λ , $\pi(q)$ is not quadratic either and, in fact, $P(Q,t) \sim e^{t\pi(Q/t)}$ is far from a Gaussian. The symmetry property (6) therefore leads to

$$\pi(q) - \pi(-q) = \left(\frac{1}{T_1} - \frac{1}{T_2}\right)q.$$
 (8)

This is the celebrated fluctuation theorem [5,6]. A few words of caution must be added. It is by now well documented [3,4,7] that the fluctuation theorem (8) can be spoiled for |q| beyond a certain model-dependent—but finite—value q^* , somewhat restricting the theorem to a finite range of q. The precise value of q^* depends on how the system is prepared initially (see Ref. [4] for a recent discussion).

In conclusion, the approximations carried out in Ref. [1] are unphysical. They violate the fluctuation theorem that, as we have shown, holds for the model studied by these authors.

- [1] A. Gomez-Marin and J. M. Sancho, Phys. Rev. E 73, 045101(R) (2006).
- [2] J. Farago, J. Stat. Phys. 107, 781 (2002).
- [3] R. van Zon and E. G. D. Cohen, Phys. Rev. Lett. 91, 110601 (2003).
- [4] P. Visco, J. Stat. Mech. P06006 (2006).

- [5] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694 (1995).
- [6] J. Kurchan, J. Phys. A 31, 3719 (1998).
- [7] F. Bonetto, G. Gallavotti, A. Giuliani, and F. Zamponi, J. Stat. Phys. 123, 39 (2006).